HNG Float Glass Ltd

Building Envelope Warm and Humid climate

Building Envelope

Building Envelope = Exterior Façade

Well designed building Envelope -Cost Savings > by taking advantage of daylight > correct HVAC sizing

-Adheres to ECBC

Building Envelope Efficiency

- Factors
 - Heat gain/loss
 - Wind that enters inside
- Key determinants
 - Walls
 - -Window
 - Roof

Building Envelope Walls

Thermal performance of walls can be improved

- Increasing wall thickness (Thicker Glass)
- Providing air cavity
- Applying insulation on the external surface

(Ref/LowE)

(IGU)

Building Envelope Window

Important Components

- Window Size and Placement

- Glazing

– Frame

- Shading (external & internal)

Building Envelope Window-Components

Window Size and Placement-

Higher the window, deeper the daylight penetration

Clear Glass

Tinted Glass

For good Lighting and glare control; separate view and light windows
 ▶Light -Clear Glass
 ▶Glare control-Tinted Glass

Building Envelope Window-Components

Glazing

- Most commonly used-Glass
- Primary properties of Glazing that impact energy-
 - ➢Reflectance
 - >Thermal Transmittance/
 - U value
 - ≻Solar heat gain
 - ≻Glazing colour

Building Envelope Window-Components

Switchable Glass-

- To change optical and thermal properties of sealed glazed units
- Material change their reflectivity and absorptivity
- Chromogenic
 phenomenon

Chromogenic

- Thermochromatic
 - Electrochromatic
 - Photochromatic

Building Envelopes Window-Components

Thermochromatic

- Changes optical properties in response to temperature
- Liquids/ gels sandwiched
- Block solar radiation
- Reduce VLT

Building Envelopes Window-Components

Electrochromatic

- Changes optical properties when electric current runs
- Thin metallic filmsimilar to LowE
- Liquid quartz film between glass layers

Active: Electrochromic

Building Envelopes Window-Components

Photochromatic

- Changes optical properties in response to sunlight
- When Photochromatic material change their transmittance, Glass absorbs more heat

Building Envelope

WWR

- "Window Wall Ratio" is the ratio of the window area to the gross exterior wall

-WWR=(a*b)/(H*W)

Building Envelope

WWR

- Cooling energy demand increases with increase in WWR
- ECBC made glass selection more stringent with increased WWR
- WWR with 10% has higher energy consumption, due need of artificial lighting
- Optimum WWR recommended-30%

Building Envelope Comparison at WWR 30%

Thank You

